您现在的位置是:词典

无限级数;无穷级数,infinite series

2023-03-31 15:28词典 人已围观




1)infinite series
无限级数;无穷级数

2)infinite series
无穷级数
1.
Application of Monte Carlo method to infinite series;
蒙特卡罗方法在无穷级数中的应用


2.
A quantum mechanics method of the sum of infinite series;
无穷级数求和的一种量子力学解法


3.
A note on convergence of infinite series in a Banach space;
关于Banach空间中无穷级数收敛性的注记


更多例句>>

3)infinity series
无穷级数
1.
The main purpose of this paper is using the elementary method and Euler product formula to study the properties of the infinity series involving the Smarandache-Type function,and obtain its two interesting identities.
研究了一类包含Smarandache-Type可乘函数Fk(n)与Gk(n)的无穷级数及其算术性质,并利用初等方法及欧拉积公式得到了该级数的两个有趣的恒等式,从而推广了关于Smarandache-Type可乘函数的算术性质。


更多例句>>

4)Infinite order exponential series
无穷级指数级数

5)n grade infinite number
n级无穷数
1.
In the paper,by dint of geometrical meaning for infinite integral we bourgeon thought of adding new number:first we introduce n(n∈N)grade infinite number;then we also define insert number of n grade infinite number between n grade infinite number and n+1 grade infinite number.
借助于无穷积分的几何意义,萌发了增添新数的思想:首先引入了n(n∈N)级无穷数的概念;然后在n级与n+1级无穷数间又定义了n级无穷数的插入数。



6)infinite order Taylor series
无穷级Taylor级数
1.
Then the infinite order Taylor series in the unit circle is studied,and the relationship between the or-der on the type-function and the coefficients of Taylor series are obtained.
定义了关于单位圆内Taylor级数的型函数和型函数的级,研究了单位圆内无穷级Taylor级数,得到了其关于型函数U(1/1-r)的级与系数之间的几种关系。




补充资料:弱无穷维空间


弱无穷维空间
weakly infinite-dimensional space

弱无穷维空间〔we刹y词训te~‘n犯‘田‘匆,ce;cJIa606ec劝。e,。oMepooen一ocTpaHc,」 一个拓扑空间(topologjcal sPace)X,使得对其闭子集偶对的任意无穷系(A,,B‘), A,自B,=沪,i=1,2,…,存在(A与B;之间的)分划(Partition)C,,满足自c=必.不是弱无穷维的无穷维空间称为强无穷维(strongly inl训te dinle比ional)空间.弱无穷维空间也称为A弱无穷维(A一weakly沉肋ited由℃nsional)空间.若在上述定义中,进一步要求c,的某有限子族有空的交集,就得出S弱无穷维空间(S一weak】y顾-nite .dinlensio耐sPace)的概念.【补注】除上述外,A弱就是AneKcaHJIpoB弱(Akk-san山{。vweakly),S弱就是CM即HoB弱(Snurnovweakly).还有一种已经弃之不用的概念Hurewicz弱无穷维空间(Hurewicz一wea脚infin讹一山住r朋io耐space),见综述[AI], 为避免“无穷维空间”这个词的混乱,空间X要求可度量化,见【A2].

说明:补充资料仅用于学习参考,请勿用于其它任何用途。

无限级数;无穷级数,infinite series

站点信息

  • 文章统计63334篇文章